
On the Sum Capacity of A Class of Cyclically

Symmetric Deterministic Interference Channels

Bernd Bandemer, Gonzalo Vazquez-Vilar, and Abbas El Gamal

Stanford University, Information Systems Laboratory

350 Serra Mall, Stanford, CA 94305, USA

Email: {bandemer, gvazquez}@stanford.edu, abbas@ee.stanford.edu

Abstract—Certain deterministic interference channels have
been shown to accurately model Gaussian interference channels
in the asymptotic low-noise regime. Motivated by this corre-
spondence, we investigate a K user-pair, cyclically symmetric,
deterministic interference channel in which each receiver experi-
ences interference only from its neighboring transmitters (Wyner
model). We establish the sum capacity for a large set of channel
parameters, thus generalizing previous results for the 2-pair case.

I. INTRODUCTION

The Gaussian interference channel (G-IC) is one of the

most important and practically relevant models in multiple

user information theory. Although the capacity region of

this channel is not known in general, significant progress

has been made recently toward finding capacity under weak

interference [1]–[3] and bounds that are provably close to

capacity [4]–[6]. In [4], the capacity region for the two user-

pair G-IC is established to within one bit using new outer

bounds and a simplified Han-Kobayashi achievability scheme.

The same asymptotic result is derived in [5] by making a

correspondence between the G-IC in low-noise regime and

a class of deterministic, finite-field interference channels [7].

Some progress toward generalizing this result to more than

two user-pairs has been made in [6], where the solution is

found for the fully symmetric case.

Motivated by these recent results, we consider a class of K
user-pair (K ≥ 3), cyclically symmetric, deterministic, finite-

field interference channels in which each receiver experiences

interference only from its two nearest neighbors as in the

Wyner model [8]. We determine the sum capacity of this

channel for a wide range of interference parameters. Because

of symmetry in the channel and in the data rates, it suffices

to consider the K = 3 case depicted in Fig. 1. We focus our

discussion on this case while keeping in mind that all results

generalize immediately to the K user-pair Wyner case.

II. CHANNEL DEFINITION

Let F2 denote the binary finite field and let I be the

identity matrix. The zeropadding operator Z ∈ F
2N×N
2 is
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Fig. 1. Cyclically symmetric deterministic interference channel, K = 3.

defined as Z = [0N×N , IN ]T . Further, let U,D ∈ F
2N×2N
2

be the upshift and downshift matrix, respectively, such that

U[x1, x2, . . . , x2N−1, x2N ]T = [x2, x3, . . . , x2N , 0]T and

D[x1, x2, . . . , x2N−1, x2N ]T = [0, x1, . . . , x2N−2, x2N−1]
T.

We also use the standard notation An = (A1, A2, . . . , An).
We refer to a K user-pair interference channel as cyclically

symmetric if the channel is invariant to cyclic relabeling of the

pairs, i.e., renaming i as i + 1 for i < K , and K as 1.
We investigate the class of cyclically symmetric, determin-

istic, finite-field interference channels with K = 3 user-pairs

depicted in Fig. 1. The channel is stationary and memory-

less across multiple channel uses. The channel inputs are

X1, X2, X3 ∈ F
N
2 and its outputs are Y1, Y2, Y3 ∈ F

2N
2 , where

N is the number of input bit pipes at each sender. The outputs

of the channel are given by

Y1 = ZX1 + V2 + W3,

Y2 = ZX2 + V3 + W1,

Y3 = ZX3 + V1 + W2,

where + is the modulo-2 addition operator, and Vk =
U

(α−1)N
ZXk, Wk = D

(1−β)N
ZXk for every k.

The channel is parameterized by the triple (N, α, β), which
we constrain to α ∈ [1, 2], β ∈ [0, 1], and αN, βN ∈ Z.

The parameters α and β characterize the amount of up/down-

shift on the cross links and thus loosely correspond to channel

gains. Since by the definition of our channel, for each user-
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pair there is always exactly one interferer being up-shifted

and one being down-shifted, our channel is a special case of

the class of cyclically symmetric, deterministic, finite field,

Wyner connected channels. Note that the up-shifted Vk retains

the complete information of Xk, while the down-shifted Wk

incurs clipping at the low end of the vector.

Transmitter k ∈ {1, 2, 3} wishes to convey an independent

message Mk at data rate Rk to its corresponding receiver. We

define a (2nR1 , 2nR2 , 2nR3 , n) code, probability of error, and

achievability of a given rate triple (R1, R2, R3) in the standard

way [9]. The capacity region C of the channel is the closure of

the set of all achievable rate triples. Define the sum capacity

as RΣ := sup{R1 + R2 + R3 | (R1, R2, R3) ∈ C} and the

symmetric capacity as Rsym := sup{R | (R, R, R) ∈ C}. By
symmetry of the channel and convexity of the capacity region,

RΣ = 3Rsym. Furthermore, define the symmetric generalized

degrees of freedom dsym := Rsym/N , i.e., the symmetric

capacity normalized with respect to the interference-free case.

Before we state our main result, define the function

V(x) := 1+|x−1|
2 =

{
x
2 if x ≥ 1

1 − x
2 if x < 1.

Remark 1: This definition is useful in the context of de-

terministic finite-field interference channels. For example, the

symmetric generalized degrees of freedom of the two user-pair

symmetric deterministic interference channel with parameters

(N, α), with α ∈ [0,∞), are known [4], [5] to be

dsym = min
{
1,V(α),V(2α)

}
.

III. MAIN RESULT

Our main result establishes the symmetric generalized de-

grees of freedom for the class of interference channels defined

above for a large set of (α, β) parameters.

Theorem 1: The symmetric generalized degrees of free-

dom of the class of three user-pair, cyclically symmetric,

deterministic, finite field interference channel with parameters

(α, β) ∈ [1, 2]× [0, 1], where α ≥ 2β or α ≥ β

2 + 1, is

dsym = min
{
1,V(α),V(β),V(2β),V(α − β)

}
.

Fig. 2 depicts our result. The claimed dsym is piecewise

linear in (α, β), and the figure shows the linear regions in the

parameter plane with their respective minimum and maximum

values of dsym. Some of the linear pieces are subdivided (for

example, “Ea” and “Eb”) to indicate that different achievability

schemes are needed even within a single linear piece (see

Section V).

Remark 2: The theorem implies that dsym is independent

of N . For fixed α and β, all valid values of N (satisfying

αN, βN ∈ Z) yield the same dsym.

IV. CONVERSE PROOF

The upper bounds 1, V(α), V(β), and V(2β) follow in a

straightforward way from the known degree of freedom result

of the two user-pair case [4], [10]. This can be shown by giving

the complete signal Xn
k of one of the interferers as genie
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Fig. 2. Illustration of Theorem 1 in the (α, β) parameter plane. The result
applies everywhere except in region “X”.
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Fig. 3. Components of received signal Y1 for the converse proof. The
components are shown sideways, with the bottom pipe on the left. The dotted
vertical line symbolizes the “noise level”, i.e., the lower end of the vector
where further down-shifts cause loss of information. The received signal Y1

is the modulo-2 sum of the three components.

information to the receivers, thus effectively degenerating the

three user-pair case to the two-pair case.

Hence we focus on proving the bound V(α − β) by gen-

eralizing the methods introduced in [10] to the case at hand.

First note that Fano’s inequality implies (with some abuse of

notation for brevity) for every k

nRk ≤ I(Xn
k ; Y n

k ).

A. Without overlap between interferers

First consider α−β ≥ 1, which corresponds to the first line

in the definition of V(α− β). In this case, the two interfering

signals do not overlap within the received signal, as shown in

Fig. 3 (a). For example, at receiver 1, the sparsity patterns of

V2 and W3 are disjoint. We can write

I(Xn
1 ; Y n

1 )
(a)
= I(Xn

1 ; Y n
1 Wn

2 )

= I(Xn
1 ; Wn

2 ) + I(Xn
1 ; Y n

1 | Wn
2 )

(b)
= H(Y n

1 | Wn
2 ) − H(Y n

1 | Xn
1 , Wn

2 ),

where (a) is with equality since W2 is not interfered with in

Y1, and (b) uses the independence between X1 and W2. Now
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consider the last term.

H(Y n
1 | Xn

1 , Wn
2 ) = H(ZXn

1 + V n
2 + Wn

3 | Xn
1 , Wn

2 )

= H(V n
2 + Wn

3 | Wn
2 )

(a)
= H(Wn

3 ) + H(V n
2 | Wn

2 )

= H(Wn
3 ) + H(W

n

2 | Wn
2 ),

where (a) follows from the fact that V2 and W3 do not overlap

and different transmitters’ signals are independent, and W 2 is

the part of X2 that is not contained in W2 (see Fig. 3 (a)). We

conclude that

I(Xn
1 ; Y n

1 ) = H(Y n
1 | Wn

2 ) − H(Wn
3 ) − H(W

n

2 | Wn
2 ).

Writing an analogous equation for I(Xn
2 ; Y n

2 ) and I(Xn
3 ; Y n

3 ),
and adding all three of them, we arrive at

n
∑

kRk ≤ H(Y n
1 | Wn

2 ) + H(Y n
2 | Wn

3 ) + H(Y n
3 | Wn

1 )

− H(Wn
1 ) − H(W

n

1 | Wn
1 ) − H(Wn

2 )

− H(W
n

2 | Wn
2 ) − H(Wn

3 ) − H(W
n

3 | Wn
3 )

= H(Y n
1 | Wn

2 ) + H(Y n
2 | Wn

3 ) + H(Y n
3 | Wn

1 )

− H(Xn
1 ) − H(Xn

2 ) − H(Xn
3 )

Considering that nRk ≤ H(Xn
k ), we conclude that

2n
∑

kRk ≤ H(Y n
1 | Wn

2 ) + H(Y n
2 | Wn

3 ) + H(Y n
3 | Wn

1 )

≤ nH(Y1 | W2) + nH(Y2 | W3) + nH(Y3 | W1),

where single-letterization is performed by using the chain rule

and omitting part of the conditioning. The right hand side of

the last equation is maximized by letting each input bit pipe

be independent Bern(1/2). Thus

2
∑

kRk ≤ 3N(α − β), and finally,

dsym =
Rsym

N
≤ α−β

2 .

B. With overlap between interferers

Now consider the case where α − β < 1, i.e., the two

interfering signals at each receiver overlap in signal space, see

Fig. 3 (b). Define the top (1 − (α − β))N part of Xk as Tk.

We will augment the genie information Wn
2 of the previous

subsection by T n
3 . This is exactly the part of the X3-based

interference that overlaps with the X2-based interference.

Similar to the previous section, we conclude

I(Xn
1 ; Y n

1 ) ≤ I(Xn
1 ; Y n

1 , Wn
2 , T n

3 )

= I(Xn
1 ; Wn

2 , T n
3 ) + I(Xn

1 ; Y n
1 | Wn

2 , T n
3 )

= H(Y n
1 | Wn

2 , T n
3 ) − H(Y n

1 | Xn
1 , Wn

2 , T n
3 ),

The last term becomes

H(Y n
1 | Xn

1 , Wn
2 , T n

3 ) = H(ZX1 + V n
2 + Wn

3 | Xn
1 , Wn

2 , T n
3 )

= H(V n
2 + Wn

3 | Wn
2 , T n

3 )

(a)
= H(T

n

3 | T n
3 ) + H(W

n

2 | Wn
2 ),

where T 3 denotes the part of W3 that is not included in T3.

Its size is N(α− 1). We are allowed to separate the terms in

(a) because the overlapping part is resolved by T3.

Again, repeating the same for all three rates, we arrive at

n
∑

kRk ≤ H(Y n
1 | Wn

2 , T n
3 ) − H(T

n

1 | T n
1 ) − H(W

n

1 | Wn
1 )

+ H(Y n
2 | Wn

3 , T n
1 ) − H(T

n

2 | T n
2 ) − H(W

n

2 | Wn
2 )

+ H(Y n
3 | Wn

1 , T n
2 ) − H(T

n

3 | T n
3 ) − H(W

n

3 | Wn
3 ).

Since Tk and T k together form Wk , which together with W k

forms Xk, we can write

nR1 ≤ H(Xn
1 ) = H(T n

1 ) + H(T
n

1 |T
n
1 ) + H(W 1|T

n
1 , T

n

1︸ ︷︷ ︸
=W n

1

)

Using this expression and its equivalent for R2 and R3 with

the previous inequality, we obtain

2n
∑

kRk ≤ H(Y n
1 | Wn

2 , T n
3 ) + H(T n

1 ) + H(Y n
2 | Wn

3 , T n
1 )

+ H(T n
2 ) + H(Y n

3 | Wn
1 , T n

2 ) + H(T n
3 )

≤ n
(
H(Y1 | W2, T3) + H(T1) + H(Y2 | W3, T1)

+ H(T2) + H(Y3 | W1, T2) + H(T3)
)
.

Again, the right hand side is maximized by choosing all Xk

components independently according to Bern(1/2), yielding

2
∑

kRk ≤ 3N + 3N(1 − (α − β)),

dsym ≤ 1 − α−β

2 ,

which matches the definition of V(α − β) for α − β < 1.

V. ACHIEVABILITY PROOF

The set of interest {(α, β)} is divided into regions “Aa” to

“Df” as shown in Fig. 2. In each region, we use the following

coding scheme. For every sender k, we set

Xk = GDk,

where G ∈ F
N×dsymN

2 is the assignment matrix, and Dk ∈

F
dsymN

2 is a vector of i.i.d. Bern(1/2) message bits.

We constrain the coding scheme in several ways, namely,

(a) there is no coding across multiple channel uses, (b) all

transmitters use the same G, and (c) the proposed G matrices

will have at most one non-zero element per row, i.e., each

pipe in Xk is assigned either an information bit or a zero.

While these assumptions may seem overly restrictive, they are

sufficient for our purposes. Indeed, it is surprising that such

a constrained set of codes is able to meet the upper bound of

Section IV.

Remark 3: If the number of input pipes N is small, it can

severely limit our options in terms of assignment matrices.

The following argument can circumvent this problem by

expanding a given channel to one with more input pipes.

To this end, consider L ≥ 2 subsequent channel uses, with

channel inputs Xk,1, . . . , Xk,L. By interleaving these vectors

into a supersymbol X̃k =
∑L

l=1(IN ⊗ el)Xk,l, and likewise

for the outputs Ỹk, it can be shown that the resulting channel

{X̃1, X̃2, X̃3} → {Ỹ1, Ỹ2, Ỹ3} is in fact (LN, α, β) as defined
in Section II. (Here, ⊗ denotes the Kronecker product, and

el is the lth column of IL.) Through this method, a channel

with a given N can be expanded to one with LN input
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Fig. 5. Received signal Y1 in “Df”, at α = 1.6, β = 0.9, with dsym = 0.55.
Blocks in different rows carry different data.

pipes. Note that dsym is unaffected by this transformation

since it is normalized by the number of pipes. In light of

this transformation, we assume from now on that N is (or has

been made) large enough such that any fraction of N that we

incur corresponds to an integer number of pipes.

Optimal assignment matrices G for all regions in Fig. 2

are listed in Table 1. An interactive online animation is also

available at [11]. Each row in the table contains the definition

of a region in terms of affine constraints in (α, β) and a

representation of G by means of the resulting transmit vector

Xk. In the following we discuss the details for one particular

example, which is representative for all other cases.

Example (Region “Df”): This region is parameterized by

(α, β) = (4/3 + ε, 2/3 + δ) with ε ≤ 2δ, ε ≥ 1
2δ, δ ≤ 1

3 .

Fig. 4, copied from Table 1, represents an optimal assignment

G by means of the resulting transmit vector. The vector Xk

is subdivided into data blocks (hatched) that correspond to

non-zero rows of G, and zero blocks (gray) that correspond to

all-zero rows of G. Some data blocks occur twice. We denote

such block pairs as twins. Twins carry the same data bits, albeit

in reverse order as discussed later. The length of each block

as a fraction of N is annotated in the figure.

To prove achievability of Theorem 1, we require the transmit

vector to be both valid and decodable. By valid we mean

(a) all block lengths are non-negative for the range of (ε, δ)
that constitute the region, (b) the sum of the block lengths is

1, and (c) adding the sizes of all data blocks, counting twins

only once, results in the desired dsym as claimed in Theorem 1

(2/3−δ/2 in our example). By decodable, we mean that using

this transmit vector assignment, the receiver can recover all

desired data blocks from the received signal.

To verify decodability, consider Fig. 5, which uses the same

conventions as Fig. 3. The receiver sees the sum of data blocks

from different transmitters, each characterized by its length

and shift location. Different blocks may or may not overlap.

Decoding is performed sequentially, block by block. In each

step, one of three rules is applied in order to decode additional

data blocks, which are then removed from the received signal.

The three decoding rules are as follows.

1. Direct readout:

Consider the situation in Fig. 6 (b). If a data block (i) does

not overlap with any other data block and (ii) is located above

the noise level, then its data content can be read out directly

from the received signal.1 A block that has been read out is

then removed from the received signal. If the block has a twin,

it is removed as well.

2. Overlapping twins scenario (A):

Consider Fig. 6 (c). If two twin pairs exist such that (i) they

have the same block length, b1 = b2, (ii) they have the same

separation, s1 = s2, (iii) the relative shift between the pairs is

less than the separation, c < s1, and (iv) the dashed sections

of (A) in Fig. 6 (c) do not overlap with any other data block

and are above the noise floor, then both twin pairs can be

decoded and canceled from the received signal.2 To see this,

consider the following successive decoding argument [6]. Let

the two copies within a twin be in reverse order of each other.

First, the leftmost part of the left blue twin is read out. Its

data reappears on the right side of the right blue twin, thus

revealing a chunk of data on the right side of the right yellow

twin. This data in turn is replicated on the left side of the left

yellow twin, which exposes a new part of the left blue twin.

The process repeats until both twins are completely decoded.

3. Overlapping twins scenario (B):

This rule is a variant of the previous one, where pattern (B)

replaces pattern (A) in Fig. 6 (c).

In our example, the sequence of steps that completely

decodes X1 is annotated in Fig. 5: First, block 1 is decoded

via direct readout (rule 1). The now-known data block and its

twin are removed from the received signal Y1. The same rule

allows block 2 to be decoded, which is then removed from

1It is crucial that both (i) and (ii) hold for all (α, β) in the region, since
the length and location of the blocks in Fig. 5 change when α and β vary.

2Again, conditions (i)–(iv) must hold for all (α, β) in the region.

Legend

no other data blocks allowed

other data blocks allowed

(a) Legend. (b) Direct readout.

(A)

(B)

s1

b1b1

s2

b2b2

c

(c) Overlapping twins.

Fig. 6. Rules for verifying decodability. Legend (a) applies to “direct
readout”, shown in (b), and two variants of “overlapping twins”, shown in (c).
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Y1. Each removal step makes more room for subsequent rule

applications. Next, rule 2 is applied to the two pairs of twins

3. Continuing in the same fashion, the removal of blocks 1, 2

and 3 enables the two twin pairs 4 to be decoded using rule 3.

Finally, data blocks 5 and 6 can be recovered by direct readout

(rule 1), which completes the decoding process. By symmetry,

the signals at the other two receivers can be similarly decoded.

The assignments for all other regions as listed in Table 1 can

be shown to be valid and decodable using the same procedure.
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Table 1. Assignments that achieve dsym as stated in Theorem 1.
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